Analyzing AIRS data for evidence of stochastic forcing

Sergio De-Souza Machado, Andrew Tangborn Larrabee Strow, Philip Sura*

> Department of Physics, JCET University of Maryland Baltimore County (UMBC) * Florida State University, Tallahasee, FL

> > AIRS Science Team Meeting October 2014 Greenbelt, MD

Motivation

- AIRS has given us 12+ years of high quality Top-Of-Atmosphere radiance data
- The high resolution AIRS channels allow us to probe different regions of the atmosphere (eg surface, strat T(z), trop T(z), trop WV(z), UT WV(z), stratospheric ozone)
- Climate studies with AIRS data now feasible eg trace gas rates, T(z) and WV(z) rates
- Accurate scattering models allow us to compare AIRS observational data with GCM model fields; first moment (biases) and second moment (standard deviations) give primary indications of GCM accuracy
- Higher PDF moments (third = skewness, fourth = kurtosis)

Mean, StdDev, Skewness, Kurtosis are the 1st,2nd,3rd,4th moments of the (normalized) PDF

$$\langle x \rangle = \mu = \int p(x)xdx$$

$$\sigma^2 = \int p(x)(x-\mu)^2 dx$$

$$S = \frac{1}{\sigma^3} \int p(x)(x-\mu)^3 dx$$

$$K = \frac{1}{\sigma^4} \int p(x)(x-\mu)^4 dx$$

Gaussian: skewness = 0, kurtosis = 3

Sharply peaked distribution (less in the tails): Kurtosis > 3 Wider distribution (more in the tails): Kurtosis < 3

"More stuff on the left" or "tail extending to right: Skewness > 0 "More stuff on the right" or "tail extending to left: Skewness < 0

Previous work on atmospheric/ocean data

- Climate models "tuned" to reproduce mean,std dev (first, second moments)
- Use stats from "microphysical" locations (eg over multiple gridboxes) to look for "macroscopic" relationship
- Analyzing eg SST, sea level heights, 300 mb vorticity shows that
 - $K \ge 3/2S^2 r$
 - power law behavior in tails $pdf(x) = x^{-\alpha}$ for large x
- Can we model this?

Previous work on atmospheric/ocean data: Examples

atmospheric/ocean data eg SST, sea level height, 300 mb vorticity

Overview

000000000

Fig. 4. Scatter plot of excess kurtosis versus skewness for full-year SST anomalies equatorward of 65* North and South. The solid line denotes SThe function K= (3/2)5°. The estimated local 955 confidence intervals on the values are indicated in the upper right corner of the figure. Adapted from Sura and Sardeshmukh (2008).

YES: Take dynamics (forcings, linear terms, nonlinear terms) equations and separate out into slow and fast scales; the nonlinear interaction of fast scales leads to a SDE

Multiplicative noise in stochastically forced models can be shown to reproduce non-Gaussian statistics and power law behavior in PDF tails

$$\frac{dx}{dt} = a(x(t)) + b(x(t))\eta(t)$$

where a = deterministic slow processes, while $b\eta$ represents state dependent multiplicative noise [as opposed to state independent additive noise $a(x(t)) + \eta(t)$]; $\eta(t)$ is Gaussian white noise

Time dependent probability distribution function can be derived from SDE, from which the $K \ge \frac{3}{2}S^2 + B$ relationship and power law tails $pdf(x) = x^{-\alpha}$ for large x can be derived

Applications to AIRS data

- Radiative transfer for any AIRS channel is a convolution over multidimensional phase space (includes T(z), WV(z), other trace gases, surface temp, clouds etc)
- PDFS are extremely non-Gaussian, evidence of deviations from Gaussians in the tails (cold tail = clouds)
- Have shown our SARTA TwoSlab scatter code + ECMWF model fields produce simulations that agree quite well with more sophisticated MRO cloud simulators/DISORT scattering code
- How do the higher order obs/cal moments compare : Do they show $K \ge 3/2S^2 r$?

Nighttime Ocean Scenes BT1231 cm⁻¹

Example: 10 years of AIRS data CLEAR sky PDFs (blue) and ALLsky PDFs (red) for 2 channnels The clear sky PDFs are closer (though not exactly) to Gaussian while the allsky PDFs have tails due to clouds

1231 cm⁻¹ (surface/window)

AIRS data and SARTA calcs

CLEAR SKY

- can "filter" AIRS data for clear scenes, reducing entire daily observational data set by almost factor of 100
- colocate ERA geophysical, ran off SARTA clear
- collect 10 year stats into 4°bins, separated by day/night (DN), land/ocean (LO) and season (DJF/MAM/JJA/SON)

ALLSKY

- AIRS nadir tracks (index 45,46) 10 year record, over all geographical regions (approximately 100 million data points)
- colocate ERA geophysical and cloud fields, ran off SARTA scatter (TwoSlab)
- collect 10 year stats into 4°bins, separated by day/night (DN), land/ocean (LO) and season (DJF/MAM/JJA/SON) (approximately 6000 points per tropical bin)

Summer AllSky: StdDev Obs/Cal for 1231 cm⁻¹

Summer AllSky: Skew Obs/Cal for 1231 cm⁻¹

Summer AllSky: Kurt Obs/Cal for 1231 cm⁻¹

AllSky Summer Kurt vs Skew for 1231 cm⁻¹

AllSky Kurt vs Skew for different channels

$$K \ge 3/2S^2 - r$$

coeff of S^2 (OBS)

coeff of S^2 (CAL)

Clear Sky Kurt vs Skew for different channels ALL SEASONS (L) Obs and (R) Cal

OD = ocean day; expect $K \ge \frac{3}{2}S^2 - r$

coeff of S^2 (OBS)

coeff of S2 (CAL)

Clear Sky Kurt vs Skew for different channels WINTER Obs vs Cal

OD/ON = ocean day/ocean night LD/LN = land day/land night expect $K \ge 3/2S^2 - r$

coeff of S^2 (OBS)

coeff of S^2 (CAL)

Conclusions

- In general channels we examined do show evidence of stochastic forcing
 - $K \ge 3/2S^2 r$
 - power law behavior in tails $pdf(x) = x^{-\alpha}$ for large x
- High altitude T(z) channels much quieter, except daytime over land?
- AIRS measurements include stemp, temp(z), WV(z), clouds
 - can we understand the multi-dimentional behaviour in terms of these 1D results?
 - Should we bin the obs in terms of BT1231 eg ≥ 300 K convection, ≥ 290 K stratus, ≥ 270 K altostratus, ≤ 270 K cirrus and ≤ 230 K DCC??
 - allsky data has $1.3S^2 \le K \le 1.5S^2$; compare to allsky calcs (NWP models) which show $1.5S^2 \le K \le 1.7S^2$
 - Conversely clear sky obs/cal data has $1.4S^2 \le K \le 1.8S^2$

Stochastic theory material: preprints available on P. Sura's website